MERCK

希望販売価格[※]が

Lab Water Solutions

カウントダウンはじまる!

PFAS 対応 水道法改訂 Milli-Q[®] からできる応援キャンペーン

2026 年 4 月法規制スタートに向けて! Milli-Q[®] で安心の水質管理を

キャンペーン期間

2025年9月1日~2026年3月31日

お見積り有効期限: 2026年4月末

水道事業や受託分析会社で PFAS 分析用に Milli-Q[®] 導入をご検討されているお客様に、 ご利用いただけるキャンペーンです。

PFAS 検査が義務化! 水道水の安全基準が新時代へ

PFOS と PFOA が 2026 年 4 月から 引き上げ 水質基準

[|]水道事業に | 検査・順守義務あり

水質管理 目標設定項目

検査・順守義務なし

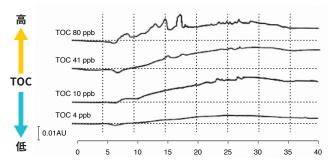
PFNA など7種の PFAS 追加

要検討項目

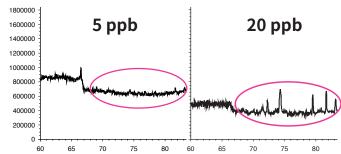
厚生労働省では現在 PFAS 分析の手法を整備中ですが、WHO (世界保健機関) や米国環境保護庁 (EPA)、EU では LC-MS/MS による分析を推奨しています。

※ キャンペーン期間中に希望販売価格(税別)が予告なく変更される場合があります。 その際には、変更後の希望販売価格(税別)へ割引率が適用されます。

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada



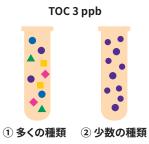
お客様の現在の状況についてお聞かせください


。現在ご使用の超純水製造装置に TOC モニターが備わっていない

TOC モニタリングされていない超純水で LC-MS/MS 分析を行うことの潜在 的リスク、認識されていますか?

● 超純水の TOC の違いにおける HPLC 試験への影響

超純水の TOC の違いにおける LC-MS 試験への影響



- ・全て比抵抗値 18.2 MΩ・cm の超純水のクロマトグラム
- ・比抵抗値とTOC値には相関関係ない

TOCモニター搭載の超純水製造装置が必須です。

☑ 低 TOC の値だけで、LC-MS/MS 分析の信頼性は本当に保証できるの?

同じ TOC 濃度でも溶質の種類数 が少ない方が電荷の競合が減り (左図②)、分析対象(PFAS)の イオン化効率が上がるため、シグ ナルが大きくなることが知られて います。その結果、ピークが検出 されやすくなります。

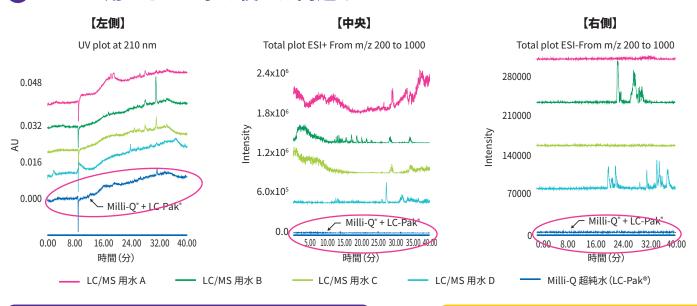
TOC が低くてもピークが 検出されることがあり ます。

LC-Pak

超純水精製において除去が難しい物質ってどういう物なの?

有機化合物 除去できる○ 活性炭 (一部有機化合物は△) C18 逆相シリカ 除去できる◎

活性炭では、一部の有機化合物の除去がしづらい ことが知られています。


☑ 活性炭だけで有機化合物の完全除去は可能なの?

活性炭だけでは有機化合物の完全除去は困難で 補助処理が必要になります。 最後の砦となるのが C18 逆相シリカを充填した メルク独自の LC-Pak® です。

2. ボトル水をご使用中である

☑ LC-MS 用のボトル水を使えば問題ない?

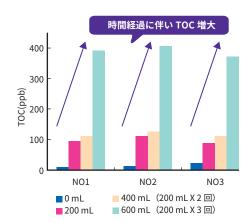
4 種類の市販 LC-MS グレードのボトル水と、**C18 逆相シリカの 最終フィルターを搭載した** 超純水を比較しました。

【左側】UV 吸光度(210 nm)

【中央】ESI + モードで測定した Total Ion Chromatogram (TIC)

【右側】ESI - モードで測定した Total Ion Chromatogram(TIC)

赤丸で囲った C18 逆相シリカの超純水は他のボトル水に比べて、明らかにピークが少なく、シグナルも非常に低く抑えられています。



水質

C18 逆相シリカ 処理された 超純水

☑ ボトル水の運用リスクは?

	L当り価格
Milli-Q° IQ 7003 LC タイプ +消耗品*(LC-Pak° 含)	約 402 円
HPLC 用蒸留水	約1,700円
LC / MS 用蒸留水	約 2,300 円
PFAS 分析用超純水	約 3,500 円
※1日10日程度使用 社署を9年間使用した	世令の日立

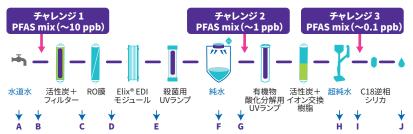
※1日10L程度使用、装置を8年間使用した場合の目安

開封回数が増えるほど有機物のコンタミ が強まる傾向です。 LC-MS/MS 用水や PFAS 分析用水は一般に単価が高くなりますが、超純水製造装置で精製される超純水であれば、1リットルあたりのコストを大幅に抑えて運用することが可能です。

ガロン瓶は保管場所を取るうえに持ち 運びが重く、在庫管理やガロン瓶の廃 棄処理にも手間がかかります。

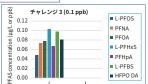
3。これから初めて PFAS の分析を行う

● EPA のドラフトメゾット 1633 を用いて超純水を分析した結果 (MIlli-Q® IQ 7000 LC タイプ)


PFAS	MDL (ng/L)	超純水	PFAS	MDL (ng/L)	超純水	PFAS	MDL (ng/L)	超純水	PFAS	MDL (ng/L)	超純水
PFBA	1.8	<mdl< td=""><td>PFTeDA</td><td>0.46</td><td><mdl< td=""><td>4:2 FTS</td><td>1.6</td><td><mdl< td=""><td>ADONA</td><td>1.4</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFTeDA	0.46	<mdl< td=""><td>4:2 FTS</td><td>1.6</td><td><mdl< td=""><td>ADONA</td><td>1.4</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	4:2 FTS	1.6	<mdl< td=""><td>ADONA</td><td>1.4</td><td><mdl< td=""></mdl<></td></mdl<>	ADONA	1.4	<mdl< td=""></mdl<>
PFPeA	0.92	<mdl< td=""><td>PFBS</td><td>0.28</td><td><mdl< td=""><td>6:2 FTS</td><td>2.3</td><td><mdl< td=""><td>PFMPA</td><td>0.46</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFBS	0.28	<mdl< td=""><td>6:2 FTS</td><td>2.3</td><td><mdl< td=""><td>PFMPA</td><td>0.46</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	6:2 FTS	2.3	<mdl< td=""><td>PFMPA</td><td>0.46</td><td><mdl< td=""></mdl<></td></mdl<>	PFMPA	0.46	<mdl< td=""></mdl<>
PFHxA	0.46	<mdl< td=""><td>PFPeS</td><td>0.46</td><td><mdl< td=""><td>8:2 FTS</td><td>2.4</td><td><mdl< td=""><td>PEMBA</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFPeS	0.46	<mdl< td=""><td>8:2 FTS</td><td>2.4</td><td><mdl< td=""><td>PEMBA</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	8:2 FTS	2.4	<mdl< td=""><td>PEMBA</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<>	PEMBA	0.92	<mdl< td=""></mdl<>
PFHpA	0.48	<mdl< td=""><td>PFHxS</td><td>0.52</td><td><mdl< td=""><td>PFOSA</td><td>0.46</td><td><mdl< td=""><td>NFDHA</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFHxS	0.52	<mdl< td=""><td>PFOSA</td><td>0.46</td><td><mdl< td=""><td>NFDHA</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	PFOSA	0.46	<mdl< td=""><td>NFDHA</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<>	NFDHA	0.92	<mdl< td=""></mdl<>
PFOA	0.59	<mdl< td=""><td>PFHpS</td><td>0.37</td><td><mdl< td=""><td>NMeFOSA</td><td>0.46</td><td><mdl< td=""><td>9Cl-PF3ONS</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFHpS	0.37	<mdl< td=""><td>NMeFOSA</td><td>0.46</td><td><mdl< td=""><td>9Cl-PF3ONS</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	NMeFOSA	0.46	<mdl< td=""><td>9Cl-PF3ONS</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<>	9Cl-PF3ONS	0.92	<mdl< td=""></mdl<>
PFNA	0.46	<mdl< td=""><td>PFOS</td><td>0.46</td><td><mdl< td=""><td>NEtFOSA</td><td>0.46</td><td><mdl< td=""><td>11Cl-PF3OUdS</td><td>1.8</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFOS	0.46	<mdl< td=""><td>NEtFOSA</td><td>0.46</td><td><mdl< td=""><td>11Cl-PF3OUdS</td><td>1.8</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	NEtFOSA	0.46	<mdl< td=""><td>11Cl-PF3OUdS</td><td>1.8</td><td><mdl< td=""></mdl<></td></mdl<>	11Cl-PF3OUdS	1.8	<mdl< td=""></mdl<>
PFDA	0.46	<mdl< td=""><td>PFNS</td><td>0.37</td><td><mdl< td=""><td>NMeFOSAA</td><td>1.1</td><td><mdl< td=""><td>PFEESA</td><td>0.46</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFNS	0.37	<mdl< td=""><td>NMeFOSAA</td><td>1.1</td><td><mdl< td=""><td>PFEESA</td><td>0.46</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	NMeFOSAA	1.1	<mdl< td=""><td>PFEESA</td><td>0.46</td><td><mdl< td=""></mdl<></td></mdl<>	PFEESA	0.46	<mdl< td=""></mdl<>
PFUnA	0.46	<mdl< td=""><td>PFDS</td><td>0.46</td><td><mdl< td=""><td>NEtFOSAA</td><td>0.64</td><td><mdl< td=""><td>3:3 FTCA</td><td>1.4</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFDS	0.46	<mdl< td=""><td>NEtFOSAA</td><td>0.64</td><td><mdl< td=""><td>3:3 FTCA</td><td>1.4</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	NEtFOSAA	0.64	<mdl< td=""><td>3:3 FTCA</td><td>1.4</td><td><mdl< td=""></mdl<></td></mdl<>	3:3 FTCA	1.4	<mdl< td=""></mdl<>
PFDoA	0.46	<mdl< td=""><td>PFDS</td><td>0.46</td><td><mdl< td=""><td>NMeFOSE</td><td>4.6</td><td><mdl< td=""><td>5:3 FTCA</td><td>9.2</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFDS	0.46	<mdl< td=""><td>NMeFOSE</td><td>4.6</td><td><mdl< td=""><td>5:3 FTCA</td><td>9.2</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	NMeFOSE	4.6	<mdl< td=""><td>5:3 FTCA</td><td>9.2</td><td><mdl< td=""></mdl<></td></mdl<>	5:3 FTCA	9.2	<mdl< td=""></mdl<>
PFTrDA	0.46	<mdl< td=""><td>PFDoS</td><td>0.83</td><td><mdl< td=""><td>NEtFOSE</td><td>4.6</td><td><mdl< td=""><td>7:3 FTCA</td><td>9.2</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	PFDoS	0.83	<mdl< td=""><td>NEtFOSE</td><td>4.6</td><td><mdl< td=""><td>7:3 FTCA</td><td>9.2</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	NEtFOSE	4.6	<mdl< td=""><td>7:3 FTCA</td><td>9.2</td><td><mdl< td=""></mdl<></td></mdl<>	7:3 FTCA	9.2	<mdl< td=""></mdl<>

(MDL: Methood Detection Limit)

EPAのドラフトメソッド 1633 を用いて、40 種類の PFAS が超純水中から検出されないことを確認しています。


● PFAS 除去チャレンジ試験 3 つのチャレンジ試験の概要図

7 種類の PFAS 混合物を 3 つのポイントで PFAS 除去チャレンジ試験を 行い、A \sim J のポイントにて分析した。チャレンジ 1:PFAS mix(\sim 10 ppb)、チャレンジ 2:PFAS mix(\sim 0.1 ppb)。

万が一、水道水中に PFAS が含まれたとし ても、最終的な超純水からは検出されない

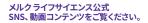
キャンペーン対象製品

Q-POD® 2本必須	割引※
Milli-Q® IQ 7003/05/10/15 LC タイプ	最大
Milli-Q® IQ 7000 LC タイプ	20%
Milli-Q® IQ 7000 LC タイプ + Elix® Essential UV 3/5/10 (IQX システム)	引き

- ※ 希望販売価格が割引となります
- ・本キャンペーン期間中の購入価格は、お取り扱い販売店とお客様間の売買契約に準じます。実価格はお取り扱い販売店へお問い合わせください。
- ・キャンペーン期間中に希望販売価格(税別)が予告なく変更される場合があります。その際には、変更後の希望販売価格(税別)へ割引率が適用されることがあります。

サイエンス系 お役立ちメディア M-hub

かんたんカタログ検索 カタログ ファインダー



掲載価格は希望販売価格(税別)です。実際の価格は弊社製品取扱販売店へご確認ください。なお、品目、製品情報、価格等は予告なく変更される場合がございます。予めご了承ください。記載内容は2025年8月時点の情報です。 Merck, the vibrant M, and Milli-Q are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources. ©2025 Merck KGaA, Darmstadt, Germany, All rights reserved.

メルク株式会社

ライフサイエンス ラボウォーター事業部

〒106-0041 東京都港区麻布台1-3-1 麻布台ヒルズ 森JPタワー 26階

製品の最新情報はこちら www.merckmillipore.com/LW

装置ご検討など営業的なお問い合わせ: lwjpcase@merckgroup.com Tel: 03-4531-3939 修理メンテナンス関連のお問い合わせ: 1139ts@merckgroup.com Tel: 03-4531-1139